Deep Ocean Oxygen Levels May Be More Susceptible to Climate Change than Expectedhttps://phys.org/news/2020-02-deep-ocean-oxygen-susceptible-climate.htmlMuch more oxygen than previously thought is transported deep into the ocean interior through a 'trap door" in the Labrador Sea that some researchers say could be closing as a result of climate change.... Researchers measured the transfer of gases, including oxygen and carbon dioxide, from the atmosphere to depths as great as two kilometres. The oxygen taken up by the ocean over a year in the Labrador Sea was 10 times larger than typically estimated. Large numbers of air bubbles, injected during violent, winter storms, were responsible for the difference.
The higher oxygen supply also implies higher-than-expected demand for oxygen by deep-sea ecosystems.
The Labrador Sea is one of only a handful of locations worldwide, where the atmosphere and deep ocean connect, directly. A 'trap door' to the deep ocean opens there for a few months each winter, when surface water becomes cold and dense enough to sink into and mix with deep, oxygen-deficient waters.
"While bubble-mediated gas transfer has been recognized for decades, our measurements show how critically important it is when the 'trap door' is open and a vast volume of oxygen-deficient deep ocean water is exposed to the atmosphere," says Dariia Atamanchuk, a research associate in Dalhousie's Department of Oceanography and lead author of the study.
The deep ocean waters then flow out of the Labrador Sea, supplying life-supporting oxygen to a vast area of the ocean, worldwide.
"We refer to the Labrador Sea as one of the lungs of the deep ocean and the deep circulation as being like its blood stream," says Dr. Atamanchuk. "Oxygen taken up from the atmosphere in the Labrador Sea may ultimately support respiration of organisms living tens of thousands of kilometers away, including fish living in the deep Pacific or Indian oceans."
Model-based projections have suggested that the Labrador Sea's 'trap door' might be closing, due to the delivery of increasing amounts of fresh water from melting ice on Greenland and the rapidly changing Arctic."More fresh water means lower density and shallower mixing, and that would cause the ocean's breathing to, literally, become shallower," says Doug Wallace, a professor of Oceanography at Dalhousie and initiator of the study.
Dr. Atamanchuk adds that the effect of a similar 'trap door' closure off Antarctica may already have been felt in the deep South Atlantic Ocean, which has recorded high and difficult-to-explain levels of deoxygenation over the past 50 years.D. Atamanchuk et al.
Rapid transfer of oxygen to the deep ocean mediated by bubbles,
Nature Geoscience (2020).