The linked (open access) reference indicates that the current IPCC assessment models miss critical dynamic human-earth systems feedback mechanisms that means that our current assessments significantly underestimate coming impacts (see image of different types of possible collapses under our influence).
Safa Motesharrei et al, Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems, National Science Review (2016). DOI: 10.1093/nsr/nww081
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nww081Abstract: “Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.”
Significance Statement: “The Human System has become strongly dominant within the Earth System in many different ways. However, in current models that explore the future of humanity and environment, and guide policy, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates such as United Nations (UN) population projections. This makes the models likely to miss important feedbacks in the real Earth–Human system that may result in unexpected outcomes requiring very different policy interventions. The importance of humanity's sustainability challenges calls for collaboration of natural and social scientists to develop coupled Earth–Human system models for devising effective science-based policies and measures.”
See also the associated linked article entitled: “It's more than just climate change”.
https://phys.org/news/2017-02-climate_1.htmlExtract: “Co-author Matthias Ruth, Director and Professor at the School of Public Policy and Urban Affairs, Northeastern University, said: "The result of not dynamically modeling these critical Human-Earth System feedbacks would be that the environmental challenges humanity faces may be significantly underestimated. Moreover, there's no explicit role given to policies and investments to actively shape the course in which the dynamics unfold. Rather, as the models are designed now, any intervention—almost by definition—comes from the outside and is perceived as a cost. Such modeling, and the mindset that goes with it, leaves no room for creativity in solving some of the most pressing challenges."
"The paper correctly highlights that other human stressors, not only the climate ones, are very important for long-term sustainability, including the need to reduce inequality'', said Carlos Nobre (not a co-author), one of the world's leading Earth System scientists, who recently won the prestigious Volvo Environment Prize in Sustainability for his role in understanding and protecting the Amazon. "Social and economic equality empowers societies to engage in sustainable pathways, which includes, by the way, not only the sustainable use of natural resources but also slowing down population growth, to actively diminish the human footprint on the environment."
Michael Mann, Distinguished Professor and Director of the Earth System Science Center at Penn State University, who was not a co-author of the paper, commented: "We cannot separate the issues of population growth, resource consumption, the burning of fossil fuels, and climate risk. They are part of a coupled dynamical system, and, as the authors show, this has dire potential consequences for societal collapse. The implications couldn't be more profound."”