While my last series of posts have focused on factors that could accelerate (earlier than assumed by DeConto & Pollard 2016) ice mass loss from the ASE marine glaciers, in this post I provide some factors that could cause ice mass losses from other portions of the WAIS earlier than assumed by DeConto & Pollard (2016).
The first four following references on both Oceanic Rossby Waves (see the first attached image) and Oceanic Infragravity Waves that telecommunicate energy from the Pacific Ocean to West Antarctica, and which promote ice calving events.
Pierre St-Laurent, John M. Klinck and Michael S. Dinniman (2012), "On the Role of Coastal Troughs in the Circulation of Warm Circumpolar Deep Water on Antarctic Shelves", JPO.
Bromirski, P.D., Miller, A.J., Flick, R.E, and Auad, G., (2011), "Dynamical Suppression of Sea Level Rise Along the Pacific Coast of North America: Indications for Imminent Acceleration" Journal of Geophysical Research, Vol. 116, C07005, doi: 10.1029/2010JC006759, July 2011.
Bromirski, P. D., O. V. Sergienko, and D. R. MacAyeal (2010), Transoceanic infragravity waves impacting Antarctic ice shelves, Geophys. Res. Lett., 37, L02502, doi:10.1029/2009GL041488.
The fourth (linked) reference provides recent field evidence of the impacts of tsunami and infragravity waves on the Ross Ice Shelf and concludes that such very long period waves can reduce the stability of Antarctic ice shelves; which could then reduce the buttressing on the associated marine glacial, and thus can serve to accelerate the rate of sea level rise (and the ice-climate feedback mechanism).
P. D. Bromirski et al. (20 July 2017), "Tsunami and infragravity waves impacting Antarctic ice shelves", JGR Oceans, DOI: 10.1002/2017JC012913
http://onlinelibrary.wiley.com/doi/10.1002/2017JC012913/fullAbstract: "The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50–300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (∼70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise."
Plain Language Summary
"A major source of the uncertainty in the magnitude and rate of global sea level rise is the contribution from Antarctica. Ice shelves buttress land ice, restraining land ice from reaching the sea. We present the analysis of seismic data collected with a broadband seismic array deployed on the Ross Ice Shelf, Antarctica. The characteristics of ocean gravity-wave-induced vibrations, that may expand existing fractures in the ice shelf and/or trigger iceberg calving or ice shelf collapse events, are described. The mechanical dynamic strains induced can potentially affect ice shelf integrity, and ultimately reduce or remove buttressing restraints, accelerating sea level rise."
&
The second attached figure by Fogt et al 2011 indicates that trends for cyclones storm in both the Ross Sea, and Bellingshausen Sea, Basins has been of increased intensity (ie lower cental pressure) and increase storm frequency. This will tend to increase calving from ice shelves/tongues in these areas.
&
I note that the conventional thinking is that the cold FRIS/RIS ice shelves will largely remain intact until well after 2300 possibly due to their belief in the stationary nature of both: (a) the water adjoining the FRIS/RIS in the Continential Zone, within the Continental Water Boundary, CWB, shown in the third attached image; and (b) the protective circulation pattern beneath a cold ice shelf that helps to keep warm CDW out from beneath as cold ice shelf, per Hellmer et al 2012. However, in the next linker reference, Hellmer et al (2017) demonstrates that warm CDW will circulate beneath the FRIS circa 2070.
Hartmut H. Hellmer et al. (2017), "The Fate of the Southern Weddell Sea Continental Shelf in a Warming Climate", Journal of Climate,
https://doi.org/10.1175/JCLI-D-16-0420.1http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-16-0420.1http://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-16-0420.1Abstract: "Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders of magnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet."
Extract: "Our experiments indicate that the link between the hydrography on the southern Weddell Sea continental shelf and melt rates beneath the Filchner–Ronne Ice Shelf is controlled by a positive feedback mechanism: Once the reversal of the near-bottom density gradient across the Filchner Trough, together with a rising coastal thermocline, facilitates the direct inflow of the slope current into the trough, warm deep water flushes the ice shelf cavity, causing its warming, enhanced basal mass loss, and a vigorous outflow of glacial meltwater. The latter further freshens the shelf water and thus maintains a density and flow structure at the sill that supports further access of warm water to the ice shelf cavity. The increase in basal melting accelerates the cavity circulation, drawing in even more warm water of open ocean origin—a self-intensifying mechanism. Although the initial trigger for this transition is freshening on the continental shelf as a result of atmosphere–ocean interactions, once the system is in the warm-shelf phase, the only way to stop the inflow of the warm water is to return to twentieth-century atmospheric conditions and to reduce the meltwater input. At first, the latter could be realized by a reduction in the floating portion of the ice sheet. However, the resulting loss of buttressing of the inland ice sheet would accelerate the draining ice streams. The discharge of ice from the relevant catchment basin and a significant contribution to global sea level will be inevitable."
&
Lastly I note that the following linked (open access) reference cites research on four decades of marine glacier grounding line retreat in the Bellingshausen margin (see fourth attached image), which is losing ice mass faster than most researchers previously expected, primarily due to oceanic heat effects:
Frazer D.W. Christie, Robert G. Bingham, Noel Gourmelen, Simon F.B. Tett & Atsuhiro Muto (22 May 2016), "Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica", Geophysical Research Letters, DOI: 10.1002/2016GL068972
http://onlinelibrary.wiley.com/doi/10.1002/2016GL068972/abstractAbstract: "Changes to the grounding line, where grounded ice starts to float, can be used as a remotely-sensed measure of ice-sheet susceptibility to ocean-forced dynamic thinning. Constraining this susceptibility is vital for predicting Antarctica's contribution to rising sea levels. We use Landsat imagery to monitor grounding line movement over four decades along the Bellingshausen margin of West Antarctica, an area little monitored despite potential for future ice losses. We show that ~65% of the grounding line retreated from 1990-2015, with pervasive and accelerating retreat in regions of fast ice flow and/or thinning ice shelves. Venable Ice Shelf confounds expectations in that despite extensive thinning, its grounding line has undergone negligible retreat. We present evidence that the ice shelf is currently pinned to a sub-ice topographic high which, if breached, could facilitate ice retreat into a significant inland basin, analogous to nearby Pine Island Glacier."