A Significant Question in Cancer Risk and Therapy: Are Antibiotics Positive or Negative Effectors?
Current Answers and Possible Alternatives
Received: 31 July 2020; Accepted: 31 August 2020; Published: 6 September 2020
Abstract: Cancer is predominantly considered as an environmental disease caused by genetic or
epigenetic alterations induced by exposure to extrinsic (e.g., carcinogens, pollutants, radiation) or
intrinsic (e.g., metabolic, immune or genetic deficiencies). Over-exposure to antibiotics, which is
favored by unregulated access as well as inappropriate prescriptions by physicians, is known to have
led to serious health problems such as the rise of antibiotic resistance, in particular in poorly developed
countries. In this review, the attention is focused on evaluating the effects of antibiotic exposure on
cancer risk and on the outcome of cancer therapeutic protocols, either directly acting as extrinsic
promoters, or indirectly, through interactions with the human gut microbiota. The preponderant
evidence derived from information reported over the last 10 years confirms that antibiotic exposure
tends to increase cancer risk and, unfortunately, that it reduces the efficacy of various forms of cancer
therapy (e.g., chemo-, radio-, and immunotherapy alone or in combination). Alternatives to the
current patterns of antibiotic use, such as introducing new antibiotics, bacteriophages or enzybiotics,
and implementing dysbiosis-reducing microbiota modulatory strategies in oncology, are discussed.
The information is in the end considered from the perspective of the most recent findings on the
tumor-specific and intracellular location of the tumor microbiota, and of the most recent theories
proposed to explain cancer etiology on the notion of regression of the eukaryotic cells and systems
to stages characterized for a lack of coordination among their components of prokaryotic origin,
which is promoted by injuries caused by environmental insults
snip:
3. Antibiotics and Cancer Risk
As correctly expressed by McCormack and Boffetta in the title of one of their articles (“Today’s
lifestyles, tomorrow’s cancers: trends in lifestyle risk factors for cancer in low- and middle-income
countries”) [110 ], the reality is that it is precisely in those countries where not only the unregulated
consumption of antibiotics happens more frequently, but also where, unlike what happens in developed
counties [ 111 ], accurate records of cancer incidence are not periodically updated or not even maintained
at all. Given this situation, epidemiological assessments about antibiotic exposure and cancer risk are
very valuable. In the course of the last fifteen years, studies on possible effects of antibiotic exposure
on cancer risk have focused primarily on the cancer types more frequent in humans, and generally
have been designed to include cohorts of cancer patients and randomly selected non-cancer patients
as controls.
In studies related to breast cancer, the data suggested an association between antibiotic
consumption and cancer risk. Although in some studies the association was qualified as weak [112 , 113 ],
other studies reported a clearly positive association with the number of prescriptions and the cumulative
days of antibiotic use [114 ,115 ]. While in some studies the same patterns of association were observed
with all classes of antibiotics tested [ 114 ,115 ], a better association was reported by different antibiotic
classes [112 , 116 ]. The situation was not clear with regard to lung cancer, as the data provided insufficient
evidence to support or refute a possible carcinogenic effect of antibiotics [117]. The information from
studies on colorectal cancer (CRC) seems more conclusive, most likely due to the greater number of
studies published much more frequently because of the general trend of increased scientific interest
in the gut microbiota. Most CRC-related studies report an association, even at the adenoma stage,
with both timing and duration of antibiotic exposure [ 118 – 120 ]. In addition, and more importantly,
some of these studies allowed the dissociation between the effects of antibiotic usage on the risk of
colon cancer vs. rectal cancer, as the data consistently showed a positive association between antibiotic
use and colon cancer, but there was either no association or a negative correlation with cancer of the
rectum [121–123].
In more general studies of other digestive cancers (esophagus, stomach, small intestine,
hepatobiliary, and pancreas), positive associations were found between certain antibiotic classes
and particular tumor types, which increased with dose [124 , 125]. Positive associations were found
between the use of penicillins and esophageal, gastric and pancreatic cancer, with clearer dose-response
effects in the latter type [124 ]. Nitroimidazoles and quinolones showed more modest associations
with all digestive tumor types investigated [125 ]. Studies on non-melanoma skin cancer showed
that there was an increased risk of developing skin cancer associated with the use of photosensitive
antibiotics [ 126– 130 ]. Exposure to antibiotics such as ciprofloxacin, ketoconazole, and sulfamethoxazole
increased the risk of developing basal cell carcinoma (BCC), whereas the use of doxycycline and
sulfamethoxazole increased the risk of squamous cell carcinoma (SCC) [126 , 127 ,129 ]. Although some
studies associated the use of tetracycline with BCC risk [126 ,127 ], it was also reported that the use of
tetracycline demonstrated positive interactions regarding simultaneous UV light exposure and the risk
of SCC [129 ]. An association was also observed between the use of moxifloxacin and an increased
risk of developing SCC during the first year after lung post-transplantation [ 128 ]. In addition, the use
of a mathematical model also predicted, and somehow confirmed, that the risk of developing skin
cancer is positively associated with the use of antibiotics [130 ]. Finally, two large multi-tumor type
studies [ 131 ,132 ] are worthwhile mentioning. In the first one [ 131 ], researchers followed for a period
of six years the number of cancers diagnosed in a sample of 3,112,624 individuals with no previous
history of cancer, and analyzed that information with regard to the patterns of antibiotic usage in the
study population. Data from this study showed that cancer incidence increased with the number
of prescriptions, and that the extent of the association of the relative risk with antibiotic exposure
varied with tumor type, being greatest in tumors of endocrine glands, followed in decreasing order by
cancers of the prostate, breast, lung, colon and ovary [ 131 ]. The second multi-tumor type study [ 132 ],
the largest reported to date, reported results from the systemic review of about 7.9 million individuals
Antibiotics 2020, 9, 580 8 of 19
showing that, on average, antibiotic use increased cancer risk by about 18%, although the effect varied
with tumor type: 30% increased incidence of lung, pancreatic and genitourinary cancers; smaller risk
increases (6–8%) for CRC, gastric cancer and melanoma; and no association was found with esophageal
or cervical cancer. With regard to antibiotic types, the highest risk was associated with the use of
β-lactams, cephalosporins and fluoroquinolones"
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558931/pdf/antibiotics-09-00580.pdfLynn Margulis and the endosymbiont hypothesis: 50 years later
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426843/(tripped across this while reading some astrobio, so leaving it here)