While the increasing Global Warming Potential, GWP, of methane with decreasing atmospheric hydroxyl ions is not a positive feedback strictly limited to the Arctic; nevertheless, over on RealClimate I posted the following information indicating how research from the list of references at the bottom of the post support the idea that for high methane emission scenarios, the GWP of methane could increase from its current value of 34 (over 100 years) to 50 (over 100 years) by as early as 2060:
"Isaken et al (2011) quantify how as atmospheric methane concentrations increase, the global warming potential, GWP, of methane also increases (see references at end of post). Also note that any source increasing atmospheric methane concentrations, increase the GPW of all previously emitted methane remaining in the atmosphere. As an example of the possible extreme change in radiative forcing in a 50-year time horizon for Isaken et al (2011)'s 4 x CH4 (i.e. quadrupling the current atmospheric methane burden) case of additional emission of 0.80 GtCH4/yr is 2.2 Wm-2, and as the radiative forcing for the current methane emissions of 0.54 GtCH4/yr is 0.48 Wm-2, this give an updated GWP for methane, assuming the occurrence of Isaksen et al's 4 x CH4 case in 2040, would be: 33 (per Shindell et al 2009, note that AR5 gives a value of 34) times (2.2/[0.8 + 0.48]) divided by (0.54/0.48) = 50.
As NOAA's Mauna Loa measurement of atmospheric methane concentrations are only currently increasing at a rate of approximately 0.25% per year (or 12.5% change in 50-years); how could anyone be concerned that the change in atmospheric methane burden in 50-years could be 300% (as per Isaken et al (2011) case 4XCH4; which would require an additional 0.80 GtCH4/yr of methane emissions on top of the current rate of methane emissions of 0.54 GtCH4/yr)?
At the high CL scenarios, I note the following possible additional sources (beyond or current emissions, and see list of references at the end of this post):
• RCP 8.5 50%CL (which does not consider such possible methane sources as the ESAS, the permafrost or from shale gas) assumes an approximately doubling (Meinshausen et.al. 2011) of the present atmospheric methane burden by 2100, or a 50% increase fifty years primarily due to increase emissions from northern wetlands (see Bastviken et al 2011) and conventional anthropogenic sources.
• Methane emissions from permafrost degradation (see Schuur and Abbott (2011)).
• The Clathrate Gun Hypothesis postulated that methane hydrates can be destabilized due to geotechnical slope failures on the various continental slopes around the Arctic Ocean; which might take decades rather than millennia to accumulate meaningful methane emissions.
• Anthropogenic methane leaks associated with the development of international hydrofracking operations (including significantly that from China) will likely exceed the comparable leaks from USA hydrofracking operations, within one decade.
• The methanetrack.org website has shown significant increases in atmospheric methane concentrations over Antarctica this austral winter (which I believe are due to increases in methane emissions from the Southern Ocean seafloor due to increases in the temperature of bottom water temperatures), and if this trend continues, then the Southern Hemisphere could be a significant source of additional atmospheric methane (this century).
• Similarly, Eillott et al (2011), Reagan (2011) and Reagan and Moridis (2008), for the equivalent of RCP 8.5 50% CL methane emissions from global marine methane hydrates could be 0.3 GtCH4/yr by 2100.
• Significantly, the East Siberian Arctic Shelf, ESAS, has up to 1000 Gt of methane reserves, and it is highly believable that 1% of this (or up to 10 Gt) is in the form of free gas trapped underneath the currently degrading subsea permafrost cap, which could be released within the next few decades by a combination of increasing Arctic Ocean water temperatures, increased storm activity, and possible increases in seismic activity.
Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., and Enrich-Prast, A. (2011), "Freshwater Methane Emissions Offset the Continental Carbon Sink", Science, Vol 331, pp. 50.
Elliott, S., Maltrud, M., Reagan, M., Moridis, G., and Cameron-Smith, P., "Marine methane cycle simulations for the period of early global warming", Journal of Geophysical Research, Vol. 116, G01010, doi: 10.1029/2010JG00 1300, 2011.
Isaksen, I. S. A., Gauss M., Myhre, G., Walter Anthony, K. M. and Ruppel, C., (2011), "Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions", Global Biogeochem. Cycles, 25, GB2002, doi:10.1029/2010GB003845. (see:
http://onlinelibrary.wiley.com/doi/10.1029/2010GB003845/abstract)
Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J-F., Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M., and van Vuuren, D.P.P., (2011); "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300", Climatic Change, 109:213-241, doi: 10.1007/s10584-011 -0156-z.
Reagan, M.T. (PI), (2011), Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations, Lawrence Berkeley Laboratory: Task Report 10-1, January 31, 2011.
Reagan, M.T., and Moridis, G.J. (2008), "Dynamic response of oceanic hydrate deposits to ocean temperature change", J. Geophys. Res., 113, 107, 486-513, doi: 10.1029/2008JC004938.
Schuur, E.A.G. and Abbott, B., (2011), "High risk of permafrost thaw", Nature, 480, 32-33, Dec. 2011."