The linked reference makes the case for retrocausality, which could make it easier to formulate quantum gravity & the Holographic interpretation of the universe, and is consistent with HIOTTOE (as I have previously discussed) & would have implications for computers that would be more efficient than quantum computers (as I have also previously discussed):

Matthew S. Leifer & Matthew F. Pusey (2017), "Is a time symmetric interpretation of quantum theory possible without retrocausality?", Proceedings of the Royal Society A, .DOI: 10.1098/rspa.2016.0607

http://rspa.royalsocietypublishing.org/content/473/2202/20160607&

https://arxiv.org/abs/1607.07871Abstract: "Huw Price has proposed an argument that suggests a time symmetric ontology for quantum theory must necessarily be retrocausal, i.e. it must involve influences that travel backwards in time. One of Price's assumptions is that the quantum state is a state of reality. However, one of the reasons for exploring retrocausality is that it offers the potential for evading the consequences of no-go theorems, including recent proofs of the reality of the quantum state. Here, we show that this assumption can be replaced by a different assumption, called λ-mediation, that plausibly holds independently of the status of the quantum state. We also reformulate the other assumptions behind the argument to place them in a more general framework and pin down the notion of time symmetry involved more precisely. We show that our assumptions imply a timelike analogue of Bell's local causality criterion and, in doing so, give a new interpretation of timelike violations of Bell inequalities. Namely, they show the impossibility of a (non-retrocausal) time symmetric ontology."

See also the associated article entitled: "Physicists provide support for retrocausal quantum theory, in which the future influences the past"

https://phys.org/news/2017-07-physicists-retrocausal-quantum-theory-future.htmlExtract: "Although there are many counterintuitive ideas in quantum theory, the idea that influences can travel backwards in time (from the future to the past) is generally not one of them. However, recently some physicists have been looking into this idea, called "retrocausality," because it can potentially resolve some long-standing puzzles in quantum physics. In particular, if retrocausality is allowed, then the famous Bell tests can be interpreted as evidence for retrocausality and not for action-at-a-distance—a result that Einstein and others skeptical of that "spooky" property may have appreciated.

In a new paper published in Proceedings of The Royal Society A, physicists Matthew S. Leifer at Chapman University and Matthew F. Pusey at the Perimeter Institute for Theoretical Physics have lent new theoretical support for the argument that, if certain reasonable-sounding assumptions are made, then quantum theory must be retrocausal.

…

In 2012, Price laid out an argument suggesting that any quantum theory that assumes that 1) the quantum state is real, and 2) the quantum world is time-symmetric (that physical processes can run forwards and backwards while being described by the same physical laws) must allow for retrocausal influences. Understandably, however, the idea of retrocausality has not caught on with physicists in general.

"There is a small group of physicists and philosophers that think this idea is worth pursuing, including Huw Price and Ken Wharton [a physics professor at San José State University]," Leifer told Phys.org. "There is not, to my knowledge, a generally agreed upon interpretation of quantum theory that recovers the whole theory and exploits this idea. It is more of an idea for an interpretation at the moment, so I think that other physicists are rightly skeptical, and the onus is on us to flesh out the idea."

…

In their paper, Leifer and Pusey also reformulate the usual idea of time symmetry in physics, which is based on reversing a physical process by replacing t with –t in the equations of motion. The physicists develop a stronger concept of time symmetry here in which reversing a process is not only possible but that the probability of occurrence is the same whether the process is going forward or backward.

The physicists' main result is that a quantum theory that assumes both this kind of time symmetry and that retrocausality is not allowed runs into a contradiction. They describe an experiment illustrating this contradiction, in which the time symmetry assumption requires that the forward and backward processes have the same probabilities, but the no-retrocausality assumption requires that they are different.

So ultimately everything boils down to the choice of whether to keep time symmetry or no-retrocausality, as Leifer and Pusey's argument shows that you can't have both. Since time symmetry appears to be a fundamental physical symmetry, they argue that it makes more sense to allow for retrocausality. Doing so would eliminate the need for action-at-a-distance in Bell tests, and it would still be possible to explain why using retrocausality to send information is forbidden.

…

If retrocausality is a feature of the quantum world, then it would have vast implications for physicists' understanding of the foundations of quantum theory. Perhaps the biggest significance is the implication for the Bell tests, showing that distant particles really cannot influence each other, but rather—as Einstein and others believed—that quantum theory is incomplete. If the new results are true, then retrocausality may be one of the missing pieces that makes quantum theory complete.

"I think that different interpretations [of quantum theory] have different implications for how we might go about generalizing standard quantum theory," Leifer said. "This might be needed to construct the correct theory of quantum gravity, or even to resolve some issues in high-energy physics given that the unification of the other three forces is still up in the air in the light of LHC results. So I think that future theories built on the ideas of existing interpretations are where we might see a difference, but admittedly we are quite far from figuring out how this might work at present."