Support the Arctic Sea Ice Forum and Blog

Author Topic: Maximum Credible Domino Scenario (MCDS) – References & Conversion Factors  (Read 7420 times)

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
MAXIMUM CREDIBLE DOMINO SCENARIO (MCDS) – References & Conversion Factors

This MCDS-REF thread provides the related Maximum Credible Domino Scenario (MCDS, which can be thought of as a 'Perfect Storm' scenario) references and selected related conversion factors.

Table of Contents

Selected Conversion Factors      Post 1
Selected References         Replies 1 to 26
[Note that for convenience reference posts are grouped by the first letter of the lead author's name so that all 'A' lead authors are in Reply 1 and all 'Z' lead authors are in Reply 26.]

Selected Conversion Factors
I provide some useful information for converting ice mass loss (and/or freshwater fluxes) both into flow rates and into eustatic sea level rise:

One Sverdrup (Sv) is 106 m3 s-1, which is ~ 3 x 104 Gt year-1 = 30,000Gt/yr
1 Gt of water = 1 cubic km of water
1Tt of water = 1,000 cubic km of water
100 Gt of ice mass loss ~ 0.28mm of Eustatic SLR
1 Gt = 1 gigatonne = the mass of 1.091 cubic km of ice

To convert the change in Earth heat inventory (EHI) in ZJ (1 ZJ = 1021 J) accumulated over a time period X in years into Earth Energy Imbalance (EEI, in W/m2) use the following for formula (where 5.10 x 1014 m2 is the surface area of the Earth):

EHI (J x 1021) / X (years) / 5.10 x 1014 (m2) / 3.15576 x 107 (seconds/year) = EEI
or EHI in ZJ / (16.094376)(X in years) = EEI in W/m2

Also, I provide the following useful information regarding GHG units (click on the attached image):
 

Next, see the MCDS-BN (Maximum Credible Domino Scenario – Domino Effect Analysis using Bayesian Networks) thread for introductory remarks and the MCDS-FT (Maximum Credible Domino Scenario -Domino Fault Tree Analysis) thread for discussion of MCDS probabilities of occurrence relevant to the following MCDS references.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Selected MCDS References

The following references are listed by lead author and then by year of publication, and when I feel that the reference may be hard to find, I provide a hyperlink:

Abbott, T.H. and Timothy W. Cronin (01 Jan 2021), "Aerosol invigoration of atmospheric convection through increases in humidity", Science, Vol. 371, Issue 6524, pp. 83-85, DOI: 10.1126/science.abc5181

Aguiar, W., Meissner, K.J., Montenegro, A. et al. Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting. Sci Rep 11, 5473 (2021). https://doi.org/10.1038/s41598-021-84709-5

Alley, K.E. et al. (2021), "Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf", The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-76

Alley, K., Ted A. Scambos, Richard B. Alley and Nicholas Holschuh (09 Oct 2019), "Troughs developed in ice-stream shear margins precondition ice shelves for ocean-driven breakup", Science Advances, Vol. 5, no. 10, eaax2215, DOI: 10.1126/sciadv.aax2215

Alley, R.B., D. Pollard, B.R. Parizek, S. Anandakrishnan, M. Pourpoint, N.T. Stevens, J.A. MacGregor, K. Christianson, A. Muto and N. Holschuh. 2019. Possible role for tectonics in the evolving stability of the Greenland Ice Sheet. J. Geophys. Res.-Earth Surface, 124, doi.org/10.1029/2018JF004714.

Alley, R.B., S. Anandakrishnan. K. Christianson, H.J. Horgan, A. Muto, B.R. Parizek, D. Pollard and R.T. Walker. 2015. Oceanic forcing of ice-sheet retreat: West Antarctica and more. Ann. Rev. Earth Plan. Sci., 43, 7.1-7.25.

An, L., Rignot, E., Wood, M., Willis, J., Mouginot, J., and Khan, S. (2020). The tale of two ice shelves: Zachariae Isstrøm and Nioghalvfjerdsfjorden, Northeast Greenland, Dryad, Dataset, https://doi.org/10.7280/D19987.

Applegate, P.J.; Parizek, Byron R.; Nicholas, Robert E.; Alley, Richard B.; Keller, Klaus (2015), "Increasing temperature forcing reduces the Greenland Ice Sheet’s response time scale", Climate Dynamics, 45(7-8), 2001–2011, doi:10.1007/s00382-014-2451-7.

Armitage, T.W.K., Manucharyan, G.E., Petty, A.A., Thompson, A.F., Kwok, R., Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss. Nat Commun 11, 761 (2020). https://doi.org/10.1038/s41467-020-14449-z.

Auger, M., Morrow, R., Kestenare, E. et al. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nat Commun 12, 514 (2021). https://doi.org/10.1038/s41467-020-20781-1

Austermann, J., D. Pollard, J.X. Mitrovica, R. Moucha, A.M. Forte, R.M. DeConto, D.B. Rowley and M.E. Raymo. 2015. The impact of dynamic topography change on Antarctic Ice Sheet stability during the mid-Pliocene warm period. Geology, 43, 927-930.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Bakker, A.M.R., Wong, T.E., Ruckert, K.L. et al. Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet. Sci Rep 7, 3880 (2017). https://doi.org/10.1038/s41598-017-04134-5.

Bassis, J.N., et al. (18 Jun 2021), "Transition to marine ice cliff instability controlled by ice thickness gradients and velocity", Science, Vol. 372, Issue 6548, pp. 1342-1344, DOI: 10.1126/science.abf6271

Bassis, J.N., S.V. Petersen, L Mac Cathles, (2017), Heinrich events triggered by ocean forcing and modulated by isostatic adjustment, Nature, 332–334, doi:10.1038/nature21069

Bassis, J.N., and Jacobs,S., (2013), "Diverse calving patterns linked to glacier geometry", Nature Geoscience, 6, 833–836, doi:10.1038/ngeo1887.

Bassis, J. N., & C. C. Walker (23 November 2011), "Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice", Proceedings of the Royal Society Lon. A 468, 913–931, https://doi.org/10.1098/rspa.2011.0422

Bastviken, D., L.J. Tranvik, J.A. Downing, P.M. Crill and A.E. Enrich-Prast in "Freshwater Methane Emissions offset the Continental Carbon Sink", Science 7 January 2011 Vol. 331 no. 6013, p. 50, doi: 10.1126/science.1196808

Bellomo, K., Angeloni, M., Corti, S. et al. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat Commun 12, 3659 (2021). https://doi.org/10.1038/s41467-021-24015-w

Bevan, S. L., Luckman, A. J., Benn, D. I., Adusumilli, S., and Crawford, A.: Brief Communication: Thwaites Glacier cavity evolution, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-66, in review, 2021.

Bintanja R. and Olivier Andry (2017), “Towards a rain-dominated Arctic”, Geophysical Research Abstracts Vol. 19, EGU2017-4402
http://meetingorganizer.copernicus.org/EGU2017/EGU2017-4402.pdf

Bjordal, J., Storelvmo, T., Alterskjær, K. et al. Equilibrium climate sensitivity above 5 °C plausible due to state-dependent cloud feedback. Nat. Geosci. 13, 718–721 (2020). https://doi.org/10.1038/s41561-020-00649-1.

Blackburn, T., Edwards, G.H., Tulaczyk, S. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020). https://doi.org/10.1038/s41586-020-2484-5.

Boers, Niklas and Martin Rypdal (May 25, 2021), "Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point", PNAS, 118, (21), e2024192118; https://doi.org/10.1073/pnas.2024192118

Boers, N. et al. (November 20, 2018), "Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles", PNAS, 115, (47), E11005-E11014; https://doi.org/10.1073/pnas.1802573115

Bourdin, S., L. Kluft and B. Stevens (06 April 2021), "Dependence of Climate Sensitivity on the Given Distribution of Relative Humidity", Geophysical Research Letters, https://doi.org/10.1029/2021GL092462

Bradshaw, C.D., Langebroek, P.M., Lear, C.H. et al. Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures. Nat. Geosci. (2021). https://doi.org/10.1038/s41561-021-00745-w

Bronselaer, B. et al. (2018) Change in future climate due to Antarctic meltwater, Nature, doi:s41586-018-0712-z.

Brown, J. R., Brierley, C. M., An, S.-I., Guarino, M.-V., Stevenson, S., Williams, C. J. R., Zhang, Q., Zhao, A., Braconnot, P., Brady, E. C., Chandan, D., D'Agostino, R., Guo, C., LeGrande, A. N., Lohmann, G., Morozova, P. A., Ohgaito, R., O'ishi, R., Otto-Bliesner, B., Peltier, W. R., Shi, X., Sime, L., Volodin, E. M., Zhang, Z., and Zheng, W.: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-155, in review, 2020.

Burke, E., Yu Zhang and Gerhard Krinner (2020), "Evaluating permafrost physics in the CMIP6 models and their sensitivity to climate change" The Cryosphere Discussions, https://doi.org/10.5194/tc-2019-309

Burke, K. D. et al. (December 26, 2018), Pliocene and Eocene provide best analogs for near-future climates", PNAS, 115 (52) 13288-13293; https://doi.org/10.1073/pnas.1809600115
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Caesar, L., McCarthy, G.D., Thornalley, D.J.R. et al. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021). https://doi.org/10.1038/s41561-021-00699-z

Caesar et al. (April 12, 2018) "Observed fingerprint of a weakening Atlantic Ocean overturning circulation", Nature, Vol 556, http://doi.org/10.1038/s41586-018-0006-5.

Caldwell, P.M. et al. (08 November 2019), "The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution", JAMES, https://doi.org/10.1029/2019MS001870

Camilla S. Andresen et al. (2017), "Exceptional 20th century glaciological regime of a major SE Greenland outlet glacier", Scientific Reports 7, Article number: 13626, doi:10.1038/s41598-017-13246-x

Capron, E., S. O. Rasmussen, T. J. Popp, T. Erhardt, H. Fischer, A. Landais, J. B. Pedro, G. Vettoretti, A. Grinsted, V. Gkinis, B. Vaughn, A. Svensson, B. M. Vinther and J. W. C. White (8 April 2021 ), “The anatomy of past abrupt warmings recorded in Greenland ice”, Nature Communications, DOI: 10.1038/s41467-021-22241-w

Catania, G.A.  et al (10 December 2019), "Future Evolution of Greenland's Marine‐Terminating Outlet Glaciers", JGR Earth Surface, https://doi.org/10.1029/2018JF004873

Chang, P. et al. (18 November 2020), "An Unprecedented Set of High‐Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change", JAMES, https://doi.org/10.1029/2020MS002298

Chang, W., M. Haran, P.J. Applegate and D. Pollard. 2016. Calibrating an ice sheet model using high-dimensional binary spatial data. J. Amer. Stat. Assoc., 111, 57-72.

Chang, W., M. Haran, P.J. Applegate and D. Pollard. 2016. Improving ice sheet model calibration using paleoclimate and modern data. Annal. Applied Stat., 10, 4, 2274-2302.

Chester, M., Kulessa, B., Luckman, A., Bassis, J.N, & Kuipers Munneke, P., (2017), Systems Analysis of complex glaciological processes and application to calving of Amery Ice Shelf, East Antarctica. Annals of Glaciology, 58(74), 60-71. doi:10.1017/aog.2017.1.

Chiang, J. (30 May 2009), "The Tropics in Paleoclimate", Annual Review of Earth and Planetary Sciences, Vol. 37:263-297, https://doi.org/10.1146/annurev.earth.031208.100217

Choi, Y., Morlighem, M., Rignot, E., Mouginot, J., and Wood, M. (2017). Modeling the response of Nioghalvfjerdsfjorden and Zachariae Isstrøm glaciers, Greenland, to ocean forcing over the next century. Geophys. Res. Lett. 44, 11071–11079.

Christ, A.J. et al (March 30, 2021), "A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century", PNAS, 118, (13), e2021442118, https://doi.org/10.1073/pnas.2021442118

Clemmensen, K.E. et al. (22 March 2021), "A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen", Ecology Letters, https://doi.org/10.1111/ele.13735

Coletti, A. J., DeConto, R. M., Brigham-Grette, J., and Melles, M.: A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia, Clim. Past, 11, 979-989, doi:10.5194/cp-11-979-2015, 2015.

Cook et al. (2020), "Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet", The Cryosphere, 14(1):309-330, https://doi.org/10.5194/tc-14-309-2020.

Corrick, E.C. et al. (21 Aug 2020), "Synchronous timing of abrupt climate changes during the last glacial period", Science, Vol. 369, Issue 6506, pp. 963-969, DOI: 10.1126/science.aay5538

Creese, A., Washington, R. & Jones, R. Climate change in the Congo Basin: processes related to wetting in the December–February dry season. Clim Dyn 53, 3583–3602 (2019). https://doi.org/10.1007/s00382-019-04728-x.

Cruz, J.A. et al. (25 Jun 2021), "Strong links between Saharan dust fluxes, monsoon strength, and North Atlantic climate during the last 5000 years", Science Advances, Vol. 7, no. 26, eabe6102, DOI: 10.1126/sciadv.abe6102
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Dagan, G. et al. (04 November 2020), "Aerosol forcing masks and delays the formation of the North‐Atlantic warming hole by three decades", Geophysical Research Letters, https://doi.org/10.1029/2020GL090778

de Nooijer, W., Zhang, Q., Li, Q., Zhang, Q., Li, X., Zhang, Z., Guo, C., Nisancioglu, K. H., Haywood, A. M., Tindall, J. C., Hunter, S. J., Dowsett, H. J., Stepanek, C., Lohmann, G., Otto-Bliesner, B. L., Feng, R., Sohl, L. E., Tan, N., Contoux, C., Ramstein, G., Baatsen, M. L. J., von der Heydt, A. S., Chandan, D., Peltier, W. R., Abe-Ouchi, A., Chan, W.-L., Kamae, Y., and Brierley, C. M.: Evaluation of Arctic warming in mid-Pliocene climate simulations, Clim. Past Discuss., https://doi.org/10.5194/cp-2020-64, in review, 2020.

De Rydt, J., Reese, R., Paolo, F. S., and Gudmundsson, G. H.: Drivers of Pine Island Glacier speed-up between 1996 and 2016, The Cryosphere, 15, 113–132, https://doi.org/10.5194/tc-15-113-2021, 2021.

DeConto, R.M., Pollard, D., Alley, R.B. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021). https://doi.org/10.1038/s41586-021-03427-0

DeConto, R., David Pollard, and Ed Gasson (2017), "Potential for future sea-level contributions from the Antarctic ice sheet", Geophysical Research Abstracts, Vol. 19, EGU2017-15929,
http://meetingorganizer.copernicus.org/EGU2017/EGU2017-15929.pdf

DeConto, R.M. and D. Pollard. 2016. Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591-597.

Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J. S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophy. Res. Lett., 45. doi: 10.1029/2018GL077092.

Deng, S., et al. (22 March 2021), "Polar Drift in the 1990s Explained by Terrestrial Water Storage Changes", Geophysical Research Letters, https://doi.org/10.1029/2020GL092114

Denton, G.H. et al. The Zealandia Switch: Ice age climate shifts viewed from Southern Hemisphere moraines. Quaternary Science Reviews, 2021 DOI: 10.1016/j.quascirev.2020.106771

DeRepentigny, P., Alexandra Jahn, Marika M. Holland and Abigail Smith (17 July 2020), "Arctic Sea Ice in Two Configurations of the CESM2 During the 20th and 21st Centuries", JGR Oceans, https://doi.org/10.1029/2020JC016133.

Dessandier, P.-A. et al. Ice-sheet melt drove methane emissions in the Arctic during the last two interglacials, Geology (2021). DOI: 10.1130/G48580.1

Dima, M., Nichita, D.R., Lohmann, G. et al. Early-onset of Atlantic Meridional Overturning Circulation weakening in response to atmospheric CO2 concentration. npj Clim Atmos Sci 4, 27 (2021). https://doi.org/10.1038/s41612-021-00182-x

Doddridge, E.W. et al. (2020), "Southern Ocean heat storage, reemergence, and winter sea ice decline induced by summertime winds", J. Climate 1–47, https://doi.org/10.1175/JCLI-D-20-0322.1.

Dong, S. et al. (01 Feb 2021), "Attribution of Extreme Precipitation with Updated Observations and CMIP6 Simulations", Journal of Climate, DOI: https://doi.org/10.1175/JCLI-D-19-1017.1

Duffy K.A. el al. (13 Jan 2021), "How close are we to the temperature tipping point of the terrestrial biosphere?", Science Advances,Vol. 7, no. 3, eaay1052, DOI: 10.1126/sciadv.aay1052.

Dunne, J.P. et al. (23 July 2020), "Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150‐Year, and Longer Simulations", Geophysical Research Letters, https://doi.org/10.1029/2020GL088852
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
England, M.R., L M Polvani and L Sun (17 September 2020), "Robust Arctic warming caused by projected Antarctic sea ice loss", Environmental Research Letters, Volume 15, Number 10
https://iopscience.iop.org/article/10.1088/1748-9326/abaada

Erhardt, T., Capron, E., Rasmussen, S. O., Schüpbach, S., Bigler, M., Adolphi, F., and Fischer, H.: Decadal-scale progression of the onset of Dansgaard–Oeschger warming events, Clim. Past, 15, 811-825, https://doi.org/10.5194/cp-15-811-2019, 2019.

Espinoza, V. et al. (19 April 2018), "Global Analysis of Climate Change Projection Effects on Atmospheric Rivers", Geophysical Research Letters, https://doi.org/10.1029/2017GL076968

Fan, X. et al. (1 October 2020), "Global surface air temperatures in CMIP6: historical performance and future changes", Environmental Research Letters, Volume 15, Number 10; https://doi.org/10.1088/1748-9326/abb051

Felikson, D., Ginny Catania, Timothy C. Bartholomaus, Mathieu Morlighem and Brice P. Y. Noël (11 December 2020), “Steep glacier bed knickpoints mitigate inland thinning in Greenland”, Geophysical Research Letters, DOI: 10.1029/2020GL090112.

Feng, X. et al. (02 Mar 2021), "A Multidecadal-Scale Tropically Driven Global Teleconnection over the Past Millennium and Its Recent Strengthening", Journal of Climate, DOI: https://doi.org/10.1175/JCLI-D-20-0216.1

Finney, D.L. Lightning threatens permafrost. Nat. Clim. Chang. (2021). https://doi.org/10.1038/s41558-021-01016-7

Fox, L.R., et al. (07 June 2021), "Temperature Gradients Across the Pacific Ocean During the Middle Miocene", Paleoceanography and Paleoclimatology, https://doi.org/10.1029/2020PA003924

Francis, D. et al. (11 Nov 2020), "On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica", Science Advances, Vol. 6, no. 46, eabc2695, DOI: 10.1126/sciadv.abc2695
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Galeotti, S., R. DeConto, T. Naish, P. Stocchi, F. Florindo, M. Pagani, P. Barrett, S.M. Bohaty, L. Lanci, D. Pollard, S. Sandroni, F. Talarico and J.C. Zachos. 2016. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science, 352, 76-80.

Garnello, A. et al. (24 May 2021), "Projecting permafrost thaw of sub-Arctic tundra with a thermodynamic model calibrated to site measurements", JGR Biogeosciences, https://doi.org/10.1029/2020JG006218

Garner, A.J. et al. (29 October 2018), "Evolution of 21st Century Sea Level Rise Projections", Earth's Future, https://doi.org/10.1029/2018EF000991

Gasson, E.G.W., R.M. DeConto, D. Pollard and C.D. Clark. 2018. Numerical simulations of a kilometer-thick Arctic ice shelf consistent with ice grounding observations. Nature Comm., 9:1510, doi:10.1038/s41467-018-03707-w.

Gasson, E., R.M. DeConto and D. Pollard. 2016. Modeling the oxygen isotopic composition of the Antarctic ice sheet and its significance to Pliocene sea level. Geology, 44, 827-830.

Gasson, E., Robert M. DeConto, David Pollard and Richard H. Levy (2016), "Dynamic Antarctic ice sheet during the early to mid-Miocene", PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1516130113

Gasson, E., R.M. DeConto, D. Pollard and R.H. Levy. 2016. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Nat. Acad. Sci., 113, 3459-3464, doi: 10.1073/pnas.1516130113

Gasson, E., R. DeConto and D. Pollard. 2015. Antarctic bedrock topography uncertainty and ice sheet stability. Geophys. Res. Lett., 42, 5372-5377.

Gettelman, A. et al. (29 December 2020), “Climate Impacts of COVID‐19 Induced Emission Changes”, Geophysical Research Letters, DOI: 10.1029/2020GL091805

Gilford, D.M., Ashe, E.L., DeConto, R.M., Kopp, R.E., Pollard, D. & Rovere, A. (2020), "Could the Last Interglacial constrain projections of future Antarctic ice mass loss and sea-level rise?", Journal of Geophysical Research: Earth Surface, https://doi.org/10.1029/2019JF005418.

Gladstone, R.M. et al. (1 June 2012), "Calibrated prediction of Pine Island Glacier retreat during the 21st and 22nd centuries with a coupled flowline model", Earth and Planetary Science Letters, Volumes 333–334, Pages 191-199, https://doi.org/10.1016/j.epsl.2012.04.022

Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lipscomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Simon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A., Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Edwards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R., Humbert, A., Huybrechts, P., Le clec'h, S., Lee, V., Leguy, G., Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A., Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Straneo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6, The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, 2020.

Gomez, N., K. Latychev and D. Pollard. 2018. A coupled ice sheet-sea level model incorporating 3D Earth structure: Variations in Antarctica during the last deglacial retreat. J. Clim., 31, 4041-4054.

Gomez, N., D. Pollard and D. Holland. 2015. Sea level feedback lowers projections of future Antarctic Ice Sheet mass loss. Nature Commun., 6, 8798, doi:10.1038/ ncomms9798.

Gora, E.M. and Esquivel-Muelbert, A. 2021. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants. doi: 10.1038/s41477-021-00879-0

Gorodetskaya, I. V.  et al. (14 August 2014), "The role of atmospheric rivers in anomalous snow accumulation in East Antarctica", Geophysical Research Letters, https://doi.org/10.1002/2014GL060881

Goyal, R. et al. (20 January 2021), "Historical and projected changes in the Southern Hemisphere surface westerlies", Geophysical Research Letters, https://doi.org/10.1029/2020GL090849

Greenbaum, J.S., Blankenship, D.D., Young, D.A., Aitken, A.R.A., Richter, T.G., Roberts, J.L., Warner, J.C., van Ommen, T.D., and Siegert, M.J. (2015). Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298.

Greenwood, S.L. et al. (13 Jan 2021), "Exceptions to bed-controlled ice sheet flow and retreat from glaciated continental margins worldwide", Science Advances, Vol. 7, no. 3, eabb6291, DOI: 10.1126/sciadv.abb6291

Guan, Y., M. Haran and D. Pollard. 2018. Inferring ice thickness from a glacier dynamics model and multiple surface data sets. Environmetrics, 29:e2460, https://doi.org/10.1002/env.2460.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Haine, T. W. N. (09 November 2020), "Arctic Ocean Freshening Linked to Anthropogenic Climate Change: All Hands on Deck", Geophysical Research Letters, https://doi.org/10.1029/2020GL090678

Hankel, C. and Eli Tziperman (2021), "The Role of Atmospheric Feedbacks in Abrupt Winter Arctic Sea Ice Loss in Future Warming Scenarios", Journal of Climate, Page(s): 4435–4447, DOI: https://doi.org/10.1175/JCLI-D-20-0558.1

Hansen, J. (October 26, 2017), "Scientific Reticence: a DRAFT Discussion" and "Scientific Reticence and the Fate of Humanity"
http://www.columbia.edu/~jeh1/mailings/2017/20171026_ScientificReticence.pdf
https://unfccc.int/event/abibimman-foundation-james-hansen-scientific-reticence-a-threat-to-humanity-and-nature

Hansen, J., M. Sato, P. Hearty, R. Ruedy, M. Kelley, V. Masson-Delmotte, G. Russell, G. Tselioudis, J. Cao, E. Rignot, I. Velicogna, B. Tormey, B. Donovan, E. Kandiano, K. von Schuckmann, P. Kharecha, A.N. LeGrande, M. Bauer, and K.-W. Lo, 2016: Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmos. Chem. Phys., 16, 3761-3812, doi:10.5194/acp-16-3761-2016.

Hansen, J., M. Sato, G. Russell, and P. Kharecha, 2013: Climate sensitivity, sea level, and atmospheric carbon dioxide. Phil. Trans. R. Soc. A, 371, 20120294, doi:10.1098/rsta.2012.0294.
Hansen, J.E., and M. Sato, 2012: Paleoclimate implications for human-made climate change. In Climate Change: Inferences from Paleoclimate and Regional Aspects. A. Berger, F. Mesinger, and D. Šijački, Eds. Springer, pp. 21-48, doi:10.1007/978-3-7091-0973-1_2.

Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann (2011), "Earth’s energy imbalance and implications", Atmos. Chem. Phys., 11, 13421–13449, doi:10.5194/acp-11-13421-2011

Haran, M., W. Chang, K. Keller, R. Nicholas and D. Pollard. 2017. Statistics and the future of the Antarctic Ice Sheet. Chance, 30:4, 37-44.

Harries, D. and Terence J. O’Kane (29 March 2021), "Dynamic Bayesian networks for evaluation of Granger causal relationships in climate reanalyses", JAMES, https://doi.org/10.1029/2020MS002442

Hassan, T., Allen, R. J., Liu, W., and Randles, C. A.: Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models, Atmos. Chem. Phys., 21, 5821–5846, https://doi.org/10.5194/acp-21-5821-2021, 2021.

Haumann, F.A., Nicolas Gruber and Matthias Münnich (06 May 2020), "Sea‐Ice Induced Southern Ocean Subsurface Warming and Surface Cooling in a Warming Climate", AGU Advances, https://doi.org/10.1029/2019AV000132

Hay, C.C. et al. (2017), "Sea Level Fingerprints in a Region of Complex Earth Structure: The Case of WAIS", J. Climate, 30 (6): 1881–1892, https://doi.org/10.1175/JCLI-D-16-0388.1

He, X.-C. et al. (05 Feb 2021), "Role of iodine oxoacids in atmospheric aerosol nucleation", Science, Vol. 371, Issue 6529, pp. 589-595, DOI: 10.1126/science.abe0298

Helanow, C. et al. (14 May 2021), "A slip law for hard-bedded glaciers derived from observed bed topography", Science Advances, Vol. 7, no. 20, eabe7798, DOI: 10.1126/sciadv.abe7798

Hellmer, H.H., Frank Kaukera, Ralph Timmermann, and Tore Hattermann (2017), "The Fate of the Southern Weddell Sea Continental Shelf in a Warming Climate", Journal of Climate, https://doi.org/10.1175/JCLI-D-16-0420.1

Hellmer, H.H., Kauker F, Timmermann R, Determann J, Rae J. (2012), "Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current", Nature, 485 (7397):225-8, doi: 10.1038/nature11064.

Hofer, S., Lang, C., Amory, C. et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nat Commun 11, 6289 (2020). https://doi.org/10.1038/s41467-020-20011-8.

Holder L. et al. (09 December 2020), "Controls Since the mid‐Pleistocene Transition on Sedimentation and Primary Productivity Downslope of Totten Glacier, East Antarctica", Paleoceanography and Paleoclimatology, https://doi.org/10.1029/2020PA003981

Holzworth, R.H., et al. (22 March 2021), "Lightning in the Arctic", Geophysical Research Letters, https://doi.org/10.1029/2020GL091366

Hopcroft, P.O., Paul J. Valdes and William Ingram (16 February 2021), "Using the mid‐Holocene ’greening’ of the Sahara to narrow acceptable ranges on climate model parameters", Geophysical Research Letters, https://doi.org/10.1029/2020GL092043

Hopcroft, P.O. et al. (September 22, 2020), "Polar amplification of Pliocene climate by elevated trace gas radiative forcing", PNAS, 117 (38) 23401-23407, https://doi.org/10.1073/pnas.2002320117

Hu, A. et al. (17 April 2020), "Role of AMOC in transient climate response to greenhouse gas forcing in two coupled models", Journal of Climate, https://doi.org/10.1175/JCLI-D-19-1027.1

Huang, H. and Yi Huang (26 March 2021), "Nonlinear coupling between longwave radiative climate feedbacks", Journal of Geophysical Research: Atmospheres, https://doi.org/10.1029/2020JD033995

Hubau, W.et al. (2020), "Asynchronous carbon sink saturation in African and Amazonian tropical forests", Nature, volume 579, pages80–87, doi: 10.1038/s41586-020-2035-0
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Jahn, A. and Rory Laiho (27 July 2020), "Forced Changes in the Arctic Freshwater Budget Emerge in the Early 21st Century", Geophysical Research Letters, https://doi.org/10.1029/2020GL088854

Jenkins, A. et al. (2018), "West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability", Nature Geoscience, volume 11, pages733–738, DOI: https://doi.org/10.1038/s41561-018-0207-4

Jeong, S., Ian M. Howat & Jeremy N. Bassis (28 November 2016), "Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica", Geophysical Research Letters, DOI: 10.1002/2016GL071360.

Jia, H., Ma, X., Yu, F. et al. Significant underestimation of radiative forcing by aerosol–cloud interactions derived from satellite-based methods. Nat Commun 12, 3649 (2021). https://doi.org/10.1038/s41467-021-23888-1

Jiménez, S., Duddu, R., and Bassis, J.N., (2017), An updated-Lagrangian damage mechanics formulation for modeling the creeping flow and fracture of ice sheets. Computer Methods in Applied Mechanics and Engineering, 313, 406-432.

Jordan, T. A., Porter, D., Tinto, K., Millan, R., Muto, A., Hogan, K., Larter, R. D., Graham, A. G. C., and Paden, J. D.: New gravity-derived bathymetry for the Thwaites, Crosson and Dotson ice shelves revealing two ice shelf populations, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-294, in review, 2020.

Joughin, I. et al. (11 Jun 2021), "Ice-shelf retreat drives recent Pine Island Glacier speedup", Science Advances, Vol. 7, no. 24, eabg3080, DOI: 10.1126/sciadv.abg3080

Joughin, I., et al (2020): "A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity", The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020.

Jüling, A., Zhang, X., Castellana, D., von der Heydt, A. S., and Dijkstra, H. A.: The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans, Ocean Sci., 17, 729–754, https://doi.org/10.5194/os-17-729-2021, 2021.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Katavouta, A. and Williams, R. G.: Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins, Biogeosciences, 18, 3189–3218, https://doi.org/10.5194/bg-18-3189-2021, 2021.

Khakzad, N. et al. (09 June 2012), "Domino Effect Analysis Using Bayesian Networks", Risk Analysis, https://doi.org/10.1111/j.1539-6924.2012.01854.x

King, M.D., Howat, I.M., Candela, S.G. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun Earth Environ 1, 1 (2020).

Klockmann, M. et al. (2020), "Coupling of the Subpolar Gyre and the Overturning Circulation During Abrupt Glacial Climate Transitions", Geophysical Research Letters, https://doi.org/10.1029/2020GL090361

Koenig, S.J., A.M. Dolan, B. de Boer, E.J. Stone, D.J. Hill, R.M. DeConto, A. A be-Ouchi, D.J. Lunt, D. Pollard, A. Quiquet, F. Saito, J. Savage and R. van de W al. 2015. Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Clim. Past, 11, 369-381.

Konrad, H., I. Sasgen, D. Pollard and V. Klemann. 2015. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth Plan. Sci. Lett., 432, 254-264.

Kopec, B. G., Akers, P. D., Klein, E. S., and Welker, J. M.: Significant water vapor fluxes from the Greenland Ice Sheet detected through water vapor isotopic (δ18O, δD, deuterium excess) measurements, The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-276, in review, 2020.

Kopp, R.E., R.M. DeConto, D.A. Bader, C.C. Hay, R.M. Horton, S. Kulp, M. Oppenheimer, D. Pollard and B.H. Strauss. 2017. Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earth's Future, 5, https://doi.org/10.1002/2017EF000663.

Kramer, R.J. et al. (25 March 2021", "Observational evidence of increasing global radiative forcing", Geophysical Research Letters, https://doi.org/10.1029/2020GL091585

Kroeger, M.E., Meredith, L.K., Meyer, K.M. et al. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. ISME J (2020). https://doi.org/10.1038/s41396-020-00804-x.

Kurt M. Cuffey, Gary D. Clow, Eric J. Steig, Christo Buizert, T. J. Fudge, Michelle Koutnik, Edwin D. Waddington, Richard B. Alley, and Jeffrey P. Severinghaus (2016), "Deglacial temperature history of West Antarctica", PNAS, vol. 113 no. 50, 14249–14254, doi: 10.1073/pnas.1609132113.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Lai, C., Kingslake, J., Wearing, M.G. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020). https://doi.org/10.1038/s41586-020-2627-8.

Langenbrunner, B. The pattern effect and climate sensitivity. Nat. Clim. Chang. 10, 977 (2020). https://doi.org/10.1038/s41558-020-00946-y

Lasslop, G. et al (2020), "Future fires in the Coupled Model Intercomparison Project phase 6 (CMIP6)" and EGU 2020 presentation.

Lawrence, J., Marjolijn Haasnoot & Robert Lempert (21 APRIL 2020), "Climate change: making decisions in the face of deep uncertainty", Nature (Correspondence), 580, 456, doi: 10.1038/d41586-020-01147-5

Le Bars, D., Sybren Drijfhout and Hylke de Vries (3 April 2017), "A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss", Environmental Research Letters, Volume 12, Number 4 , https://doi.org/10.1088/1748-9326/aa6512.

Lee, B. S., Murali Haran, Robert Fuller, David Pollard, Klaus Keller (24 March 2019), "A Fast Particle-Based Approach for Calibrating a 3-D Model of the Antarctic Ice Sheet", arXiv:1903.10032v1

Lhermitte, S. et al. (October 6, 2020), "Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment", PNAS,  117 (40) 24735-24741; https://doi.org/10.1073/pnas.1912890117

Lee, D. S. et al. (2020) The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmospheric Environment, doi:10.1016/j.atmosenv.2020.117834

Lee, B.S, Murali Haran, Robert Fuller, David Pollard, Klaus Keller (24 March 2019), "A Fast Particle-Based Approach for Calibrating a 3-D Model of the Antarctic Ice Sheet", arXiv:1903.10032v1
https://arxiv.org/abs/1903.10032
https://arxiv.org/pdf/1903.10032.pdf

Levy, R.H., D.M. Harwood, F. Florindo, R. DeConto, H. von Eynatten, C. Fielding, B. Field, E. Gasson, N. Golledge, G. Kuhn, R. McKay, T. Naish, M. Olney, D. Pollard, F. Sangiorgi, S. Schouten, S. Warny, V. Willimott, and SMS Science Team. 2016. Antarctic Ice Sheet sensitivity to atmospheric CO2 variations during the early to mid-Miocene. Proc. Nat. Acad. Sci., 113, 3453-3458.

Li, H., Fedorov, A.V. Persistent freshening of the Arctic Ocean and changes in the North Atlantic salinity caused by Arctic sea ice decline. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05850-5

Li, G., Cheng, L., Zhu, J. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. (2020). https://doi.org/10.1038/s41558-020-00918-2

Lilien, D.A., Joughin, I., Smith, B., and Shean, D.E. (2018). Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt. Cryosphere 12, 1145–1431.

Locosselli, G.M. et al. (December 29, 2020), "Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature", PNAS  117 (52) 33358-33364; https://doi.org/10.1073/pnas.2003873117

Loeb, N.G. et al. (15 June 2021), "Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate", Geophysical Research Letters, https://doi.org/10.1029/2021GL093047

Lohmann, J., Castellana, D., Ditlevsen, P. D., and Dijkstra, H. A.: Abrupt climate change as rate-dependent cascading tipping point, Earth Syst. Dynam. Discuss. [preprint], https://doi.org/10.5194/esd-2021-7, in review, 2021.

Lohmann, J. and P.D. Ditlevsen (March 2, 2021), "Risk of tipping the overturning circulation due to increasing rates of ice melt", PNAS, 118, (9), e2017989118, https://doi.org/10.1073/pnas.2017989118

Lohmann, U., Friebel, F., Kanji, Z.A. et al. Future warming exacerbated by aged-soot effect on cloud formation. Nat. Geosci. 13, 674–680 (2020). https://doi.org/10.1038/s41561-020-0631-0.

Loisel, J., Gallego-Sala, A.V., Amesbury, M.J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. (2020). https://doi.org/10.1038/s41558-020-00944-0.

López-Molina, A. et al. (2014), "A Methodology Based on Fault Tree Analysis to Assess the Domino Effect Frequency", Proceedings of the IChemE, Hazards 24, Symposium Series No. 159
https://www.icheme.org/media/8929/xxiv-paper-34.pdf

Lou, S. et al. (17 November 2020), "New SOA treatments within the Energy Exascale Earth System Model (E3SM): Strong production and sinks govern atmospheric SOA distributions and radiative forcing", JAMES, https://doi.org/10.1029/2020MS002266.

Lukovich, J. V. et al. (17 January 2009), "Atmospheric forcing of the Beaufort Sea ice gyre: Surface‐stratosphere coupling", JGR: Oceans, https://doi.org/10.1029/2008JC004849

Lyu, K., Xuebin Zhang, and John A. Church (01 Aug 2020), "Regional Dynamic Sea Level Simulated in the CMIP5 and CMIP6 Models: Mean Biases, Future Projections, and Their Linkages", Journal of Climate, DOI: https://doi.org/10.1175/JCLI-D-19-1029.1

Lyu, K. Xuebin Zhang; John A. Church and Quran Wu (2020), "Processes Responsible for the Southern Hemisphere Ocean Heat Uptake and Redistribution under Anthropogenic Warming", J. Climate, 33 (9): 3787–3807, https://doi.org/10.1175/JCLI-D-19-0478.1
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Ma, X. et al. (06 Nov 2020), "Dependence of regional ocean heat uptake on anthropogenic warming scenarios", Science Advances, Vol. 6, no. 45, eabc0303, DOI: 10.1126/sciadv.abc0303.

Ma, Y., C. S. Tripathy, and J. N. Bassis, (2017), Bounds on the calving cliff height of marine terminating glaciers, Geophys. Res. Lett., 44, 1369–1375, doi:10.1002/2016GL071560.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J., Zhang, Y., Lu, X., Bloom, A. A., Bowman, K. W., Worden, J. R., and Parker, R. J.: 2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane, Atmos. Chem. Phys., 21, 4339–4356, https://doi.org/10.5194/acp-21-4339-2021, 2021.

Mackie, A., Helen E. Brindley and Paul I. Palmer (22 March 2021), "Contrasting observed atmospheric responses to tropical SST warming patterns", Journal of Geophysical Research: Atmospheres, https://doi.org/10.1029/2020JD033564

Mackie, S., Inga J. Smith; Jeff K. Ridley; David P. Stevens and Patricia J. Langhorne (2020), "Climate response to increasing Antarctic iceberg and ice shelf melt, J. Climate 1–70; https://doi.org/10.1175/JCLI-D-19-0881.1

Malczyk, G. et al. (09 November 2020), "Repeat Subglacial Lake Drainage and Filling Beneath Thwaites Glacier", Geophysical Research Letters, https://doi.org/10.1029/2020GL089658

Mallalieu, J. et al. (8 May 2021), "Ice-marginal lakes associated with enhanced recession of the Greenland Ice Sheet" Global and Planetary Change, 103503, https://doi.org/10.1016/j.gloplacha.2021.103503

Marino, G. and Zahn, R. (2015), "The Agulhas Leakage: the missing link in the interhemispheric climate seesaw?", PAGES MAGAZINE, VOLUME 23, NO 1

Martens, J. et al. (16 Oct 2020), "Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events", Science Advances, Vol. 6, no. 42, eabb6546, DOI: 10.1126/sciadv.abb6546

Martínez‐Moreno, J. et al. (10 September 2019), "Kinetic Energy of Eddy‐Like Features From Sea Surface Altimetry", JAMES, https://doi.org/10.1029/2019MS001769

Martos, Y. M., Manuel Catalan, Tom A. Jordan, Alexander Golynsky, Dmitry Golynsky, Graeme Eagles & David G. Vaughan (6 November 2017), "Heat flux distribution of Antarctica unveiled", Geophysical Research Letters, DOI: 10.1002/2017GL075609.

McConnell J.R., el al. (2017), "Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion," PNAS, https://doi.org/10.1073/pnas.1705595114.

McClymont, E. L., Ford, H. L., Ho, S. L., Tindall, J. C., Haywood, A. M., Alonso-Garcia, M., Bailey, I., Berke, M. A., Littler, K., Patterson, M. O., Petrick, B., Peterse, F., Ravelo, A. C., Risebrobakken, B., De Schepper, S., Swann, G. E. A., Thirumalai, K., Tierney, J. E., van der Weijst, C., White, S., Abe-Ouchi, A., Baatsen, M. L. J., Brady, E. C., Chan, W.-L., Chandan, D., Feng, R., Guo, C., von der Heydt, A. S., Hunter, S., Li, X., Lohmann, G., Nisancioglu, K. H., Otto-Bliesner, B. L., Peltier, W. R., Stepanek, C., and Zhang, Z.: Lessons from a high-CO2 world: an ocean view from  ∼ 3 million years ago, Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, 2020.
McCutcheon, J., Lutz, S., Williamson, C. et al. Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nat Commun 12, 570 (2021). https://doi.org/10.1038/s41467-020-20627-w

McKay, R.M. Albot, Olga B; Dunbar, Gavin B; Lee, Jae Il; Lee, Min Kyung; Yoo, Kyu-Cheul; Kim, S; Turton, Nikita A; Levy, Richard H (2020): Ice rafted debris proxies for sediment cores RS15-LC42, RS15-LC48, IODP Site 318-U1361 and ODP Site 118-1165. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.920653

Meccia, V.L., Iovino, D. & Bellucci, A. North Atlantic gyre circulation in PRIMAVERA models. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05686-zMeehl, G.A. et al. (24 Jun 2020), "Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models", Science Advances, Vol. 6, no. 26, eaba1981, DOI: 10.1126/sciadv.aba1981

Menary, M.B, Laura C. Jackson and M. Susan Lozier (09 September 2020), "Reconciling the Relationship Between the AMOC and Labrador Sea in OSNAP Observations and Climate Models", Geophysical Research Letters, https://doi.org/10.1029/2020GL089793

Menounos, B. et al (10 Nov 2017), "Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination", Science, Vol. 358, Issue 6364, pp. 781-784, DOI: 10.1126/science.aan3001

Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Bueso-Bello, J., and PratsIraola, P. (2019). Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Sci. Adv. 5, eaau3433, DOI: 10.1126/sciadv.aau3433.

Mobasher, M., Duddu, R., Bassis, J.N., and Waisman, H. (2016). Modeling hydraulic fracture of glaciers using continuum damage mechanics. Journal of Glaciology, 62(234), 794-804. doi:10.1017/ jog.2016.68

Morlighem, M., Wood, M., Seroussi, H., Choi, Y., and Rignot, E. (2019). Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. Cryosphere 13, 723–734.

Murray, B. J., Carslaw, K. S., and Field, P. R.: Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles, Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021, 2021.

Murphy, L. N., M. Goes and A. C. Clement (09 November 2017), "The Role of African Dust in Atlantic Climate During Heinrich Events", Paleoceanography and Paleoclimatology, https://doi.org/10.1002/2017PA003150

Muschitiello, F., D’Andrea, W.J., Schmittner, A. et al. Deep-water circulation changes lead North Atlantic climate during deglaciation. Nat Commun 10, 1272 (2019). https://doi.org/10.1038/s41467-019-09237-3

Myers, T.A., et al. (13 May 2021) “Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity”, Nature Climate Change, DOI: 10.1038/s41558-021-01039-0
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
National Research Council (2013). Abrupt Impacts of Climate Change: Anticipating Surprises (National Academies Press).

Nicolas, J., Vogelmann, A., Scott, R. et al. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat Commun 8, 15799 (2017); https://doi.org/10.1038/ncomms15799
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Odériz, I., R. Silva, T.R. Mortlock, N. Mori, T. Shimura, A. Webb, R. Padilla-Hernandez, S. Villers (20 May 2021), "Natural Variability and Warming Signals in Global Ocean Wave Climates", Geophysical Research Letters, https://doi.org/10.1029/2021GL093622

Ohneiser, C., F. Florindo, P. Stocchi, A.P. Roberts, R.M. DeConto and D. Pollard. 2015. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nature Commun., 6, 8765, doi:10.1038/ncomms9765.

Olonscheck, D., Rugenstein, M., & Marotzke, J. (2020). Broad consistency between observed and simulated trends in sea surface temperature patterns. Geophysical Research Letters, 47, e2019GL086773. https://doi.org/ 10.1029/2019GL086773
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Pan, L. et al. (30 Apr 2021), "Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse", Science Advances, Vol. 7, no. 18, eabf7787, DOI: 10.1126/sciadv.abf7787

Pan, S. et al. (20 November 2020), "Larger Sensitivity of Arctic Precipitation Phase to Aerosol than Greenhouse Gas forcing", Geophysical Research Letters, https://doi.org/10.1029/2020GL090452.

Parizek B.R., Christianson, K., Alley, R.B., Voytenko, D., Vankova, I., Dixon, T.H., Walker, R.T., and Holland, D.M et al. Ice-cliff failure via retrogressive slumping, (2019) Geology, 47, 449–452, DOI: 10.1130/G45880.1.

Parizek, B.R., Christianson, K., Anandakrishnan, S., Alley, R.B., Walker, R.T., Edwards, R.A., Wolfe, D.S., Bertini, G.T., Rinehart, S.K., Bindschadler, R.A., and Nowicki, S.M.J. (2013). Dynamic (in)stability of Thwaites Glacier, West Antarctica. J. Geophys. Res. 118, 638–655.

Park, H. et al. (2020), "Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming", Science Advances, DOI: 10.1126/sciadv.abc4699.

Pattyn, F. and Mathieu Morlighem (20 Mar 2020), "The uncertain future of the Antarctic Ice Sheet", Science, Vol. 367, Issue 6484, pp. 1331-1335, DOI: 10.1126/science.aaz5487.

Pattyn, F. et al. (2018), "The Greenland and Antarctic ice sheets under 1.5 °C global warming", Nature Climate Change, DOI: 10.1038/s41558-018-0305-8 , https://www.nature.com/articles/s41558-018-0305-8

Payne, A.E., Demory, M., Leung, L.R. et al. Responses and impacts of atmospheric rivers to climate change. Nat Rev Earth Environ 1, 143–157 (2020). https://doi.org/10.1038/s43017-020-0030-5

Pedro, J. B., Markus Jochum, Christo Buizert, Feng He, Stephen Barker & Sune O. Rasmussen (15 July 2018), "Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling", Quaternary Science Reviews, Volume 192, , Pages 27-46, https://doi.org/10.1016/j.quascirev.2018.05.005.

Pefanis, V. et al. (26 October 2020), "Amplified Arctic Surface Warming and Sea Ice Loss Due to Phytoplankton and Colored Dissolved Material", Geophysical Research Letters, https://doi.org/10.1029/2020GL088795.

Perren, B.B., Hodgson, D.A., Roberts, S.J. et al. Southward migration of the Southern Hemisphere westerly winds corresponds with warming climate over centennial timescales. Commun Earth Environ 1, 58 (2020). https://doi.org/10.1038/s43247-020-00059-6

Pierrehumbert, R. T. (February 15, 2000), "Climate change and the tropical Pacific: The sleeping dragon wakes", PNAS, 97 (4) 1355-1358; https://doi.org/10.1073/pnas.97.4.1355

Pollard, D. and R.M. DeConto. 2019. Continuous simulations over the last 40 million years with a coupled Antarctic ice sheet-sediment model. Palaeogeogr. Palaeoclim. Palaeoecol., 537, https://doi.org/10.1016/j.palaeo.2019.109374.

Pollard, D., Robert M. DeConto, Richard B. Alley (13 March 2018), "A continuum model (PSUMEL1) of ice mélange and its role during retreat of the Antarctic Ice Sheet", Geosci. Model Devel., 11, 5149-5172., https://doi.org/10.5194/gmd-2018-28
https://www.geosci-model-dev-discuss.net/gmd-2018-28/gmd-2018-28.pdf

Pollard, D., N. Gomez, R.M. DeConto and H.K. Han. 2018. Estimating modern elevations of Pliocene shorelines using a coupled ice sheet-Earth-sea level model. J. Geophys. Res.-Earth Surface, 123, doi.org/10.1029/2018JF004745.

Pollard, D., N. Gomez and R. DeConto. 2017. Variations of the Antarctic Ice Sheet in a coupled ice sheet-Earth-sea level model: Sensitivity to viscoelastic Earth properties. J. Geophys. Res.-Earth Surface, 122, 2124-2138. doi: 10.1002/2017JF004371.

Pollard, D., J.F. Kasting and M.E. Zugger. 2017. Snowball Earth: Asynchronous coupling of sea-glacier flow with a global climate model. J. Geophys. Res.-Atmos., 122, 5157-5171.

Pollard, D., W. Chang, M. Haran, P. Applegate and R. DeConto. 2016. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques. Geosci. Model Devel., 9, 1697-1723, doi:10.5194/gmd-9-1697-2016.

Pollard, D., R.M. DeConto and R.B. Alley. 2015. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Plan. Sci. Lett., 412, 112-121.

Pollard, D., Robert DeConto, Won Chang, Patrick Applegate and Murali Haran (Dec 18, 2015), "Modeling of past and future variations of the Antarctic Ice Sheet with Large Ensembles" AGU Fall Meeting, Paper 60833, https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/60833

Praetorius, S., Maria Rugenstein, Geeta Persad, Ken Caldeira. Global and Arctic climate sensitivity enhanced by changes in North Pacific heat flux. Nature Communications, 2018; 9 (1) DOI: 10.1038/s41467-018-05337-8

Praetorius, S.K. and Alan C. Mix (Jul 2014), "Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming", Science, 25, Vol. 345, Issue 6195, pp. 444-448, DOI: 10.1126/science.1252000

Previdi, M. et al. (25 August 2020), "Arctic Amplification: a Rapid Response to Radiative Forcing", Geophysical Research Letters, https://doi.org/10.1029/2020GL089933

Previdi, M., B.G. Liepert, D. Peteet, J. Hansen, D.J. Beerling, A.J. Broccoli, S. Frolking, J.N. Galloway, M. Heimann, C. Le Quéré, S. Levitus, and V. Ramaswamy, 2013: Climate sensitivity in the Anthropocene. Q. J. R. Meteorol. Soc., 139, 1121-1131, doi:10.1002/qj.2165.

Proud, S.R. and Scott Bachmeier (22 March 2021), "Record‐Low Cloud Temperatures Associated With a Tropical Deep Convective Event", Geophysical Research Letters, https://doi.org/10.1029/2020GL092261

Purich, A. and Matthew H. England (18 April 2021), "Historical and future projected warming of Antarctic Shelf Bottom Water in CMIP6 models", Geophysical Research Letters, https://doi.org/10.1029/2021GL092752
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Rasmussen, T.L. et al, Climate and ocean forcing of ice-sheet dynamics along the Svalbard-Barents Sea ice sheet during the deglaciation ∼20,000–10,000 years BP, Quaternary Science Advances (2020). DOI: 10.1016/j.qsa.2020.100019

Ren, S. et al. (12 November 2020), "Higher temperature sensitivity of soil C release to atmosphere from northern permafrost soils as indicated by a meta‐analysis", Global Biochemical Cycles, https://doi.org/10.1029/2020GB006688.

Riboldi, J. et al. (28 September 2020), "On the linkage between Rossby wave phase speed, atmospheric blocking and Arctic Amplification", Geophysical Research Letters, https://doi.org/10.1029/2020GL087796

Richard, Z.D., D. Pollard, L.R. Kump and T.S. White. 2018. Anomalously low δ18O values of high-latitude Permo-Triassic paleosol siderite. Palaeogeogr. Palaeoclim. Palaeoecol., 492, 26-40.

Rignot, E. et al. (10 March 2021), "Retreat of Humboldt Gletscher, North Greenland, driven by undercutting from a warmer ocean", Geophysical Research Letters, https://doi.org/10.1029/2020GL091342

Rintoul, S.R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M.A., Greenbaum, J.S., and Blankenship, D.D. (2016). Ocean heat drives rapid basal melt of. Totten Ice Shelf. Sci. Adv. 2, e1601610.

Roach, L.A. et al. (17 April 2020), "Antarctic Sea Ice Area in CMIP6", Geophysical Research Letters, https://doi.org/10.1029/2019GL086729

Rosier, S.H.R. et al. (2021), "The tipping points and early warning indicators for Pine Island Glacier, West Antarctica", The Cryosphere, 15, 1501–1516, https://doi.org/10.5194/tc-15-1501-2021

Rowan T. Sutton (2018), "ESD Ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks", Earth Syst. Dynam., 9, 1155–1158, https://doi.org/10.5194/esd-9-1155-2018.

Ruckert, K.L., G. Shaffer, D. Pollard, Y. Guan, T.E. Wong, C.E. Forest and K. Keller. 2017. Assessing the impact of retreat mechanisms in a simple Antarctic ice sheet model using Bayesian calibration. PLoS ONE, 12(1): e0170052, doi:10.1371/journal.pone.0170052.

Ryan, J.C., Hubbard, A., Stibal, M. et al. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nat Commun 9, 1065 (2018). https://doi.org/10.1038/s41467-018-03353-2

Rydsaa, J.H. et al. (22 March 2021), "Changes in atmospheric latent energy transport into the Arctic; planetary versus synoptic scales", RMetS, https://doi.org/10.1002/qj.4022

Rye, C.D., J.Marshall, M. Kelley, G. Russell, L.S. Nazarenko, Y. Kostov, G.A. Schmidt, and J. Hansen, 2020: Antarctic Glacial Melt as a Driver of Recent Southern Ocean Climate Trends, Geophysical Research Letters 47, 11, doi:10.1029/2019GL086892.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Sallée, JB., Pellichero, V., Akhoudas, C. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021). https://doi.org/10.1038/s41586-021-03303-x

Sampaio, G., Shimizu, M. H., Guimarães-Júnior, C. A., Alexandre, F., Guatura, M., Cardoso, M., Domingues, T. F., Rammig, A., von Randow, C., Rezende, L. F. C., and Lapola, D. M.: CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon, Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, 2021.

Sampaio, G. et al (2020), "CO2 fertilization effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon", Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-386.

Sasha Z. Leidman, Åsa K. Rennermalm, Rohi Muthyala, Qizhong Guo & Irina Overeem (06 December 2020), "The Presence and Widespread Distribution of Dark Sediment in Greenland Ice Sheet Supraglacial Streams Implies Substantial Impact of Microbial Communities on Sediment Deposition and Albedo", Geophysical Research Letters, https://doi.org/10.1029/2020GL088444.

Sayedi, S.S. et al. (2020), "Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment", Environ. Res. Lett. 15 124075

Scambos, T. and 22 co-authors. 2017. How much, how fast? A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century. Glob. Plan. Change, 153, 16-34.

Schannwell, C., S.L. Cornford, D. Pollard and N.E. Barrand. 2018. Dynamic response of Antarctic Peninsula Ice Sheet to collapse of Larsen C and George VI ice shelves. The Cryo., 12, 2307-2326.

Scherer, R.P., R.M. DeConto, D. Pollard and R.B. Alley. 2016. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nature Commun., 7:12957, doi: 10.1038/ncomms12957.

Schild, K.M. et al. (20 January 2021), "Measurements of iceberg melt rates using high‐resolution GPS and iceberg surface scans", Geophysical Research Letters, https://doi.org/10.1029/2020GL089765

Schlemm, T. and Levermann, A.: A simple parametrization of mélange buttressing for calving glaciers, The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021, 2021.

Schloesser, F, T. Friedrich, A. Timmermann, R.M. DeConto and D. Pollard. 2019. Antarctic iceberg impacts on future Southern Hemisphere climate. Nature Clim. Change, doi.org/10.1038/s41558-019-0546-1.

Schneider , T., Colleen M. Kaul and Kyle G. Pressel (2019), "Possible climate transitions from breakup of stratocumulus decks under greenhouse warming", Nature Geoscience, https://doi.org/10.1038/s41561-019-0310-1

Schroeder, D.M., Donald D. Blankenship, Duncan A. Young, and Enrica Quartini, (2014), "Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet", PNAS, doi: 10.1073/pnas.1405184111

Schweiger, A.J., Steele, M., Zhang, J. et al. Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area. Commun Earth Environ 2, 122 (2021). https://doi.org/10.1038/s43247-021-00197-5

Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.: ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020.

Sentinella, A.T. et al. (08 June 2020), "Tropical plants do not have narrower temperature tolerances, but are more at risk from warming because they are close to their upper thermal limits", Global Ecology and Biogeography, https://doi.org/10.1111/geb.13117

Seroussi, H. and 38 co-authors. 2019. initMIP-Antarctica: An ice sheet model initialization experiment of ISMIP6. The Cryo., 13, 1441-1471.

Shen, Z., Yi Ming and Isaac M. Held (05 Aug 2020), "Using the fast impact of anthropogenic aerosols on regional land temperature to constrain aerosol forcing", Science Advances, Vol. 6, no. 32, eabb5297, DOI: 10.1126/sciadv.abb5297

Sherwood, S.C., Bony, S. and Dufresne, J.-L., (2014) "Spread in model climate sensitivity traced to atmospheric convective mixing", Nature; Volume: 505, pp 37–42, doi:10.1038/nature12829

Siddoway, C., Thomson, S., Hemming, S., Buchband, H., Quigley, C., Furlong, H., Hilderman, R., Robinson, D., Watkins, C., Cox, S., and Licht, K. and the IODP Expedition 379 Scientists and Expedition 382 Scientists: U-Pb zircon geochronology of dropstones and IRD in the Amundsen Sea, applied to the question of bedrock provenance and Miocene-Pliocene ice sheet extent in West Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9151, https://doi.org/10.5194/egusphere-egu21-9151, 2021.

Siegert, M., Richard B. Alley, Eric Rignot, John Englander and Robert Corel (2020), "Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures", One Earth, https://doi.org/10.1016/j.oneear.2020.11.002.

Sillmann J. et al. (14 December 2020), "Event‐based storylines to address climate risk", Earth's Future, https://doi.org/10.1029/2020EF001783

Silvano, A., Rintoul, S.R., and Herraiz-Borreguero, L. (2016). Ocean-ice shelf interaction in East Antarctica. Oceanography 29, 100–113.

SIMIP Community (17 April 2020), "Arctic Sea Ice in CMIP6", Geophysical Research Letters, https://doi.org/10.1029/2019GL086749

Simkins, L.M., J.B. Anderson, S.L. Greenwood, H.M. Gonnermann, L.O. Prothro, A.R.W. Halberstadt, L.A. Stearns, D. Pollard and R.M. DeConto. 2017. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic Ice Sheet. Nature Geosc., 10, 691-697.

Simon, M.H., Ziegler, M., Barker, S. et al. A late Pleistocene dataset of Agulhas Current variability. Sci Data 7, 385 (2020). https://doi.org/10.1038/s41597-020-00689-7

Simpson, N.P., et al. (2021) A framework for complex climate change risk assessment, One Earth, doi:10.1016/j.oneear.2021.03.005

Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L., and Nienow, P.: Review article: Earth's ice imbalance, The Cryosphere, 15, 233–246, https://doi.org/10.5194/tc-15-233-2021, 2021.

Slater, T., Hogg, A.E. & Mottram, R. Ice-sheet losses track high-end sea-level rise projections. Nat. Clim. Chang. (2020). https://doi.org/10.1038/s41558-020-0893-y.

Smith, C. J., Kramer, R. J., Myhre, G., Alterskjær, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A., Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevåg, A., Olivié, D., Fiedler, S., Lewinschal, A., Mackallah, C., Dix, M., Pincus, R., and Forster, P. M.: Effective radiative forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, 2020.

Smith et. al. (2017), "Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica", The Cryosphere, 11, 451–467, doi:10.5194/tc-11-451-2017.

Sommer, C., Seehaus, T., Glazovsky, A., and Braun, M. H.: Brief communication: Accelerated glacier mass loss in the Russian Arctic (2010–2017), The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2020-358, in review, 2020.

Spector, P., J. Stone, D. Pollard, T. Hillebrand, C. Lewis and J. Gombiner. 2018. West Antarctic sites for subglacial drilling to test for past ice-sheet collapse. The Cryo., 12, 2741-2757.

Staal, A., Fetzer, I., Wang-Erlandsson, L. et al. Hysteresis of tropical forests in the 21st century. Nat Commun 11, 4978 (2020). https://doi.org/10.1038/s41467-020-18728-7

Starr, A. et al. (2021), "Antarctic icebergs reorganize ocean circulation during Pleistocene glacials", Nature, 589, 236–241, DOI: 10.1038/s41586-020-03094-7

Steffen, W., Johan Rockström, Katherine Richardson, Timothy M. Lenton, Carl Folke, Diana Liverman, Colin P. Summerhayes, Anthony D. Barnosky, Sarah E. Cornell, Michel Crucifix, Jonathan F. Donges, Ingo Fetzer, Steven J. Lade, Marten Scheffer, Ricarda Winkelmann, Hans Joachim Schellnhuber (2018), "Trajectories of the Earth System in the Anthropocene", Proc. Nat. Acad. Sci., https://doi.org/10.1073/pnas.1810141115.

Steinthorsdottir, M. et al. (23 December 2020), "The Miocene: the Future of the Past", Paleoceanography and Paleoclimatology, https://doi.org/10.1029/2020PA004037

Stephens, G. et. al. (2017), "CloudSat and CALIPSO within the A-Train: Ten years of actively observing the Earth system", BAMS, https://doi.org/10.1175/BAMS-D-16-0324.1

Stibal, M., Jason E. Box, Karen A. Cameron, Peter L. Langen, Marian L. Yallop, Ruth H. Mottram, Alia L. Khan, Noah P. Molotch, Nathan A. M. Chrismas, Filippo Calì Quaglia, Daniel Remias, C. J. P. Paul Smeets, Michiel R. van den Broeke, Jonathan C. Ryan, Alun Hubbard, Martyn Tranter, Dirk van As, Andreas P. Ahlstrøm. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophysical Research Letters, 2017; DOI: 10.1002/2017GL075958

Strass, V.H., Gerd Rohardt, Torsten Kanzow, Mario Hoppema and Olaf Boebel (2020), "Multi-decadal warming and density loss in the deep Weddell Sea, Antarctica", J. Climate 01–60, https://doi.org/10.1175/JCLI-D-20-0271.1

Sutherland, D., Jackson, R., Kienholz, C., Amundson, J., Dryer, W., Duncan, D., Eidam, E., Motyka, R., and Nash, J. (2019). Direct observations of submarine melt and subsurface geometry at a tidewater glacier. Science 365, 369–374.

Sutton, R.T. (2018), "ESD Ideas: a simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks", Earth Syst. Dynam., 9, 1155–1158, https://doi.org/10.5194/esd-9-1155-2018

Swart, S. et al. (31 July 2019), "Constraining Southern Ocean Air-Sea-Ice Fluxes Through Enhanced Observations", Front. Mar. Sci., https://doi.org/10.3389/fmars.2019.00421

Sweet, W.V., R. Horton, R.E. Kopp, A.N. LeGrande, and A. Romanou, 2017: Sea level rise. In: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 333-363, doi: 10.7930/J0VM49F2. https://science2017.globalchange.gov/downloads/CSSR_Ch12_Sea_Level_Rise.pdf

Sweet, W.V., R.E. Kopp, C.P. Weaver, J. Obeysekera, R.M. Horton, E.R. Thieler, and C. Zervas, 2017: Global and Regional Sea Level Rise Scenarios for the United States. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD. 75 pp. https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Tabor, C.R., C.J. Poulsen and D. Pollard. 2015. How obliquity cycles powered early Pleistocene global ice-volume variability. Geophys. Res. Lett., 42, doi:10.1002/2015GL063322.

Tagesson, T. et al. (30 October 2020), "A physiology‐based Earth observation model indicates stagnation in the global gross primary production during recent decades", Global Change Biology, https://doi.org/10.1111/gcb.15424.

Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints on mixed-phase clouds imply higher climate sensitivity, Science, 352, 224–227, https://doi.org/10.1126/science.aad5300, 2016. 

Teng, H. and Branstator, Grant (2017). "Causes of Extreme Ridges That Induce California Droughts". Journal of Climate. 30 (4): 1477–1492. doi:10.1175/jcli-d-16-0524.1

Terrer, C., Phillips, R.P., Hungate, B.A. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021). https://doi.org/10.1038/s41586-021-03306-8

Thornhill, G. D., Collins, W. J., Kramer, R. J., Olivié, D., Skeie, R. B., O'Connor, F. M., Abraham, N. L., Checa-Garcia, R., Bauer, S. E., Deushi, M., Emmons, L. K., Forster, P. M., Horowitz, L. W., Johnson, B., Keeble, J., Lamarque, J.-F., Michou, M., Mills, M. J., Mulcahy, J. P., Myhre, G., Nabat, P., Naik, V., Oshima, N., Schulz, M., Smith, C. J., Takemura, T., Tilmes, S., Wu, T., Zeng, G., and Zhang, J.: Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison, Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, 2021.

Tian, S.Y., Moriaki Yasuhara, Yuanyuan Hong, Huai-Hsuan M. Huang, Hokuto Iwatani, Wing-Tung Ruby Chiu, Briony Mamo, Hisayo Okahashi, Tine L. Rasmussen (2020) "Deglacial–Holocene Svalbard paleoceanography and evidence of meltwater pulse 1B", Quaternary Science Reviews, 233: 106237 DOI: 10.1016/j.quascirev.2020.106237.

Tierney, J.E. et al, Pliocene warmth consistent with greenhouse gas forcing, Geophysical Research Letters (2019). DOI: 10.1029/2019GL083802

Tigchelaar, M., A. Timmermann, T. Friedrich, M. Heinemann and D. Pollard. 2019. Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing. The Cryo., 13, 2615-2631.

Tigchelaar, M., A. Timmermann, D. Pollard, T. Friedrich and M. Heinemann. 2018. Local insolation changes enhance Antarctic interglacials: Insights from an 800,000-year ice sheet simulation with transient climate forcing. Earth Plan. Sci. Lett., 495, 69-78.

Tim, N., Zorita, E., Emeis, K.-C., Schwarzkopf, F. U., Biastoch, A., and Hünicke, B.: Influence of position and strength of westerlies and trades on Agulhas leakage and South Benguela Upwelling, Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-16

Timmermans, M.-L., John Toole and Richard Krishfield (29 Aug 2018), "Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins", Science Advances , Vol. 4, no. 8, eaat6773, DOI: 10.1126/sciadv.aat6773.

Tsai, C.-Y., C.E. Forest and D. Pollard. 2017. Assessing the contribution of internal climate variability to anthropogenic changes in ice sheet volume. Geophys. Res. Lett., 44, doi:10.1002/2017GL073443.

Turney, et al. (2017), "Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial", Nature Communications 8, Article No. 520, https://doi.org/10.1038/s41467-017-00577-6.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Ultee, L. and J. N. Bassis, (2017), A plastic network approach to model calving glacier advance and retreat. Frontiers in Earth Science 5. https://doi.org/10.3389/feart.2017.00024.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Vaughan, D.G., David K. A. Barnes, Peter T. Fretwell & Robert G. Bingham (07 October 2011), "Potential seaways across West Antarctica", Geochemistry, Geophysics, Geosystems, https://doi.org/10.1029/2011GC003688

Vignon, E. et al. (27 March 2021), "Present and Future of Rainfall in Antarctica", Geophysical Research Letters, https://doi.org/10.1029/2020GL092281

Volker H. Strass et al (2020), "Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica", J. Climate, 33 (22): 9863–9881, https://doi.org/10.1175/JCLI-D-20-0271.1.

von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Wåhlin, A.K., et al. (09 Apr 2021), "Pathways and modification of warm water flowing beneath Thwaites Ice Shelf, West Antarctica", Science Advances, Vol. 7, no. 15, eabd7254, DOI: 10.1126/sciadv.abd7254

Walker, R.T. (23 Dec 2020), "Collision Course: Development Pushes Amazonia Toward Its Tipping Point", Environment: Science and Policy for Sustainable Development Volume 63, Issue 1, https://doi.org/10.1080/00139157.2021.1842711.

Wang, S., Qiang Wang, Qi Shu, Zhenya Song, Gerrit Lohmann, Sergey Danilov, Fangli Qiao (25 May 2021), "Nonmonotonic Change of the Arctic Ocean Freshwater Storage Capability in a Warming Climate", Geophysical Research Letters, https://doi.org/10.1029/2020GL090951

Wang, L. et al, Complex Patterns of Antarctic Ice Sheet Mass Change Resolved by Time‐Dependent Rate Modeling of GRACE and GRACE Follow‐On Observations, Geophysical Research Letters (2020). DOI: 10.1029/2020GL090961

Wang, L.  et al. (28 December 2020), "Recent Shift in the Warming of the Southern Oceans Modulated by Decadal Climate Variability", Geophysical Research Letters, https://doi.org/10.1029/2020GL090889

Watanabe, M., Dufresne, J., Kosaka, Y. et al. Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Clim. Chang. (2020). https://doi.org/10.1038/s41558-020-00933-3

Weijer W. et al. (24 May 2020), "CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation", Geophysical Research Letters, https://doi.org/10.1029/2019GL086075

Weitzman, M.L. (2009a), "On Modeling and Interpreting the Economics of Catastrophic Climate Change," Review of Economics and Statistics, 91(1), pp. 1-19, http://dx.doi.org/10.1162/rest.91.1.1

Weitzman, M.L. (2009b), "Additive damages, fat-tailed climate dynamics, and uncertain discounting"; Economics - The Open-Access, Open-Assessment E-Journal, 3, 2009-39, pp. 1-29, http://dx.doi.org/10.5018/economics-ejournal.ja.2009-39

Westerhold, T. et al. (11 Sep 2020), "An astronomically dated record of Earth’s climate and its predictability over the last 66 million years", Science, Vol. 369, Issue 6509, pp. 1383-1387, DOI: 10.1126/science.aba6853.

Wild, C. T., Alley, K. E., Muto, A., Truffer, M., Scambos, T. A., and Pettit, E. C.: Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-130, in review, 2021.

Wood, M. et al. (01 Jan 2021), "Ocean forcing drives glacier retreat in Greenland", Science Advances, Vol. 7, no. 1, eaba7282, DOI: 10.1126/sciadv.aba7282

Wood T. et al (23 December 2020), "Role of sea surface temperature patterns for the Southern Hemisphere jet stream response to CO2 forcing", Environmental Research Letters, Volume 16, Number 1, https://doi.org/10.1088/1748-9326/abce27.

Wu, S., Lembke-Jene, L., Lamy, F. et al. Orbital- and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the past 140,000 years. Nat Commun 12, 3948 (2021). https://doi.org/10.1038/s41467-021-24264-9

Wunderling, N., Donges, J. F., Kurths, J., and Winkelmann, R.: Interacting tipping elements increase risk of climate domino effects under global warming, Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, 2021.

Wunderling, N. et al. (3 April 2020), "Interacting tipping elements increase risk of climate domino effects under global warming", Earth System Dynamics, https://doi.org/10.5194/esd-2020-18.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Xia, Y., Hu, Y., Liu, J. et al. Stratospheric Ozone-induced Cloud Radiative Effects on Antarctic Sea Ice. Adv. Atmos. Sci. 37, 505–514 (2020). https://doi.org/10.1007/s00376-019-8251-6

Xie, S.-P. (03 March 2020), "Ocean Warming Pattern Effect On Global And Regional Climate Change", AGU Advances, https://doi.org/10.1029/2019AV000130
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Yamazaki, K.,  Shigeru Aoki, Keishi Shimada, Taiyo Kobayashi and Yujiro Kitade (07 July 2020), "Structure of the Subpolar Gyre in the Australian-Antarctic Basin Derived From Argo Floats", JGR Oceans, https://doi.org/10.1029/2019JC015406

Yasunari, T.J. et al. (2021), "Relationship between circum-Arctic atmospheric wave patterns and large-scale wildfires in boreal summer", Environmental Research Letters, https://iopscience.iop.org/article/10.1088/1748-9326/abf7ef
https://iopscience.iop.org/article/10.1088/1748-9326/abf7ef/pdf
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson

AbruptSLR

  • Multi-year ice
  • Posts: 19703
    • View Profile
  • Liked: 2268
  • Likes Given: 286
Zanowski, H., Alexandra Jahn and Marika M. Holland (20 March 2021), "Arctic Ocean freshwater in CMIP6 Ensembles: Declining Sea Ice, Increasing Ocean Storage and Export", Journal of Geophysical Research: Oceans, https://doi.org/10.1029/2020JC016930

Zarakas, C.M. et al. (2020), "Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO2 in CMIP6 Earth System Models", J. Climate, 33, (19), 8561–8578, https://doi.org/10.1175/JCLI-D-20-0078.1

Zelinka, M.D., et al. (03 January 2020), "Causes of Higher Climate Sensitivity in CMIP6 Models", Geophysical Research Letters, https://doi.org/10.1029/2019GL085782.

Zhang, J. et al. (February 23, 2021), "Labrador Sea freshening linked to Beaufort Gyre freshwater release", Nat. Commun.,12, 1229, https://doi.org/10.1038/s41467-021-21470-3

Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., Sulprizio, M. P., Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R. J., and Boesch, H.: Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations, Atmos. Chem. Phys., 21, 3643–3666, https://doi.org/10.5194/acp-21-3643-2021, 2021.

Zhang, Z., F. Martin Ralph and Minghua Zheng (10 September 2018), "The Relationship Between Extratropical Cyclone Strength and Atmospheric River Intensity and Position", Geophysical Research Letters, https://doi.org/10.1029/2018GL079071.

Zheng, Y., Yang, F., Duan, J., Sun, X., Fu, L., Kurths, J. (2020): The maximum likelihood climate change for global warming under the influence of greenhouse effect and Lévy noise. - Chaos, 30, 1, 013132, https://doi.org/10.1063/1.5129003

Zhou, C., Zelinka, M.D., Dessler, A.E. et al. Greater committed warming after accounting for the pattern effect. Nat. Clim. Chang. (2021). https://doi.org/10.1038/s41558-020-00955-x

Zhu, C., Liu, Z. Weakening Atlantic overturning circulation causes South Atlantic salinity pile-up. Nat. Clim. Chang. (2020). https://doi.org/10.1038/s41558-020-0897-7

Zhu, J. and Poulsen, C. J.: Last Glacial Maximum (LGM) climate forcing and ocean dynamical feedback and their implications for estimating climate sensitivity, Clim. Past, 17, 253–267, https://doi.org/10.5194/cp-17-253-2021, 2021.

Zhu J. and Christopher J. Poulsen (02 September 2020), "On the increase of climate sensitivity and cloud feedback with warming in the Community Atmosphere Models", Geophysical Research Letters, https://doi.org/10.1029/2020GL089143.
“It is not the strongest or the most intelligent who will survive but those who can best manage change.”
― Leon C. Megginson